CORRIGENDA

M. Flock,* C. Marschner 4635-4642

Silyl Anions or Silylenoids?—A DFT Study of Silyllithium Compounds with π -Donating Substituents

Chem. Eur. J., 2005, 11

DOI: 10.1002/chem.200401353

On page 4640 the energies needed for the dissociation of the lithium silylenoids $XMe(H_3Si)SiLi\cdot(OMe_2)_3$ with $X=NH_2$, PH_2 , OH, SH, F, and CI into their fragments silylene $Me(H_3Si)Si$ and $XLi\cdot(OMe_2)_3$ were discussed. Owing to erroneous absolute energies for the lithium halides, the respective α -elimination reaction for X=F and CI was reported to be exothermic. By using the correct absolute energies, the respective reactions are endothermic with energies of 154.6 and 89.5 kJ mol⁻¹ (see Table 1). Accordingly, the dissociation energies decrease in the order $X=NH_2>OH>PH_2>F>SH>CI$ and the absolute energy of the silylene Me- $(H_3Si)Si$ is 620.585913 hartree. The authors apologize for the oversight and thank Prof. S. Feng, D. Feng, and R. Li for calling attention to this mistake.

Table 1. Zero-point vibration corrected absolute and relative energies for the α -elimination of the silylenoids $XMe(H_3Si)SiLi\cdot(OMe_2)_3$ obtained at the $B3LYP/6-31+G^*$ level.

X	X(H ₃ Si)MeSiLi	XLi	$\Delta E [\mathrm{kJ} \mathrm{mol}^{-1}]$
F	-1193.00413	-572.35935	154.6
Cl	-1553.34936	-932.72936	89.5